Whole Abdominopelvic Radiotherapy and Radioimmunotherapy after Complete Resection of Desmoplastic Small Round Cell Tumor: Significant Impact on Survival

<u>Shakeel Modak¹</u>, James Saltsman¹, Neeta Pandit-Taskar², Emily Slotkin¹, Todd E. Heaton¹, Suzanne Wolden,³ Michael P. LaQuaglia¹

Departments of Pediatrics¹, Molecular Imaging and Therapy Service, Department of Radiology², Radiation Oncology³, Memorial Sloan Kettering Cancer Center, New York, USA

modaks@mskcc.org

Memorial Sloan Kettering Cancer Center₁₁

DISCLOSURES

MSK has institutional financial interests related to this research in the form of intellectual property rights and equity interests in Y-mAbs, the company licensing the intellectual property from MSK.

S. Modak reports consulting for Y-mAbs Therapeutics and Progenics

DSRCT: Current Status of Therapy

Moderately chemosensitive and radiosensitive : High-dose chemotherapy P6 protocol ٠

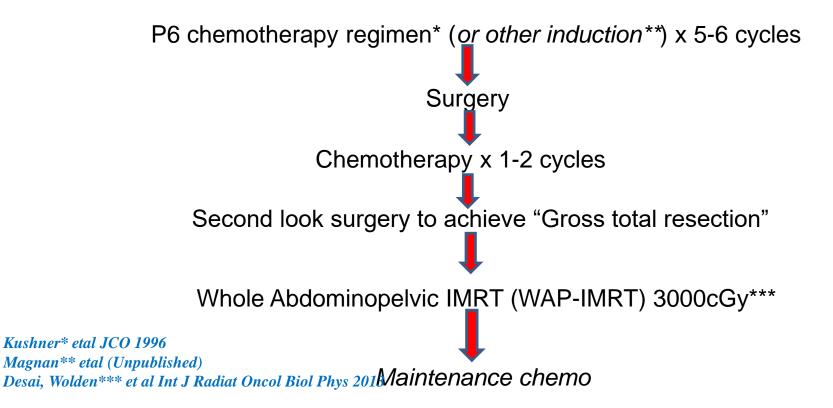
Kushner etal JCO 1996

P<0.00001

10

 "Gross total resection" required for favorable outcome: 5yr OS 20% в Complete versus Incomplete Resection Lal etal Pediatr Surg 2005 Subbiah etal CCR 2018 **Overall Survival** Complete HIPEC: Median EFS: 14.9 mo; Median OS: 44mo Incomplete Hayes -Jordan Ann Surg Oncol 2018 0.0 6 Time from Diagnosis (yrs.) А Myeloablative autologous transplant ineffective: longterm OS 20% Median RES: 13.99 Months 95% Cl: 7 26 months - NA Forlenza etal 2015 SFS 0.4 Whole abdominal IMRT better tolerated and possibly effective 10 20 30 Pinnix etal Pediatr IJROBP 2012 Casey etal IJROBP 2013

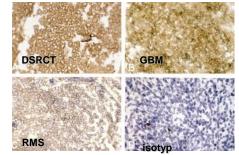
٠

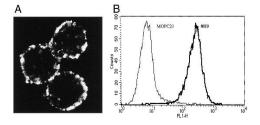

•

Memorial Sloan Kettering Cancer Center.

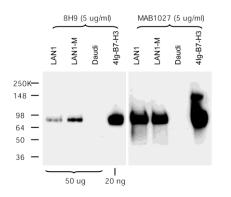
40

Pre-2009 Approach @MSKCC

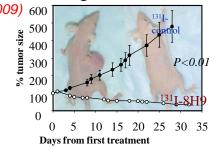



Memorial Sloan Kettering Cancer Center,

Development of omburtamab (8H9) : murine IgG1 MoAb that targets **B7H3**


Binds to range of pediatric solid tumors; restricted against normal tissues; Not immunomodulated off cell surface; Expressed on >95% DSRCT

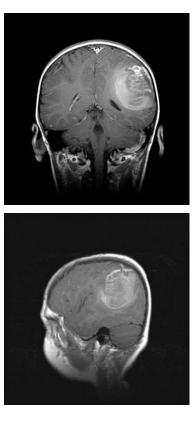
(Modak etal, Cancer Res 2001; Modak etal Med Ped Onc 2001)

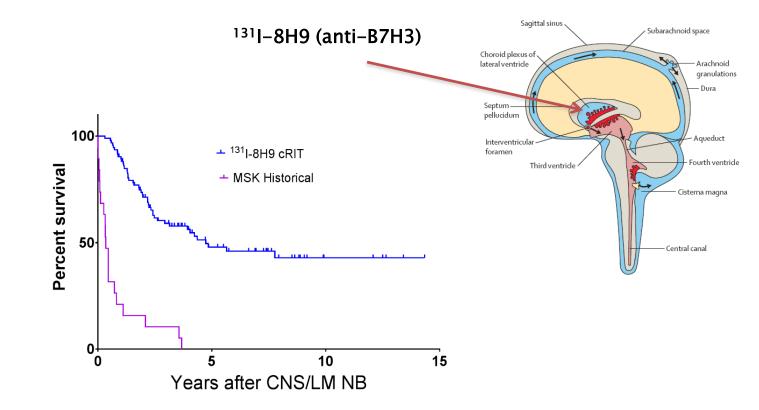

Binds to immunomodulatory molecule **B7H3**

(Xu etal Cancer xenografts

Res 2009) 600

Radioiodinated 8H9 targets JN-DSCRT-1 SQ xenografts and has therapeutic effect on RMS




(Modak etal Cancer Biother 2005)

Memorial Sloan Kettering

Compartmental radioimmunotherapy (cRIT) using intrathecal (intra-Ommaya) ¹³¹I-mAb (outpatient):

Kramer et al. J Neurooncology 97:409, 2010 Croog et al. Int J Radiat Biol Oncol 78:849, 2010 Kramer et al. 2017, SIOP, SNO

¹³¹I-8H9 (omburtamab): FDA Breakthrough Therapy Designation International trial is underway (NCT00089245), PI: Kim Kramer

Rationale for Intraperitoneal Radioimmunotherapy (IP-RIT) of DSRCT

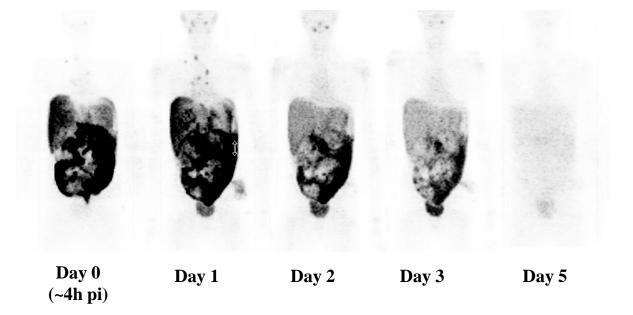
- Relapses are often within the peritoneum
- Enhance local control by targeting micrometastases
- Non-cross resistant modality
- Targets disease sites that may not be accessible to chemotherapy
- Potential to safely deliver very high doses of radiation to micrometastases
- Availability of antibody omburtamab suitable for <u>compartmental</u> RIT

Treatment schema for phase I study (poster #97)

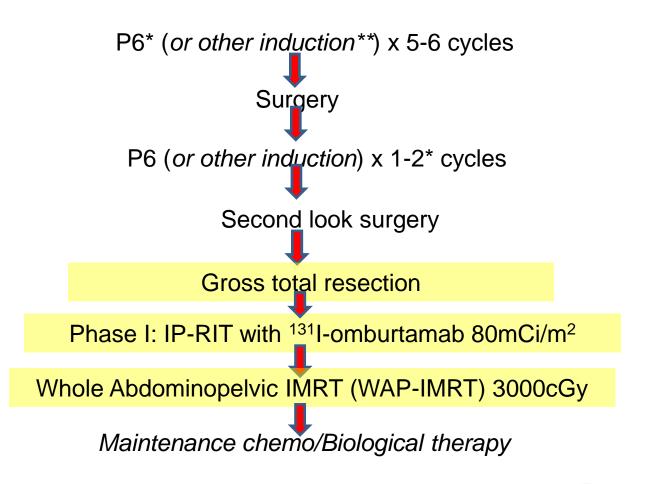
Day	Treatment/Intervention					
	Laparotomy and IP catheter insertion					
-7- +35	Oral liothyronine and potassium iodide (for thyroid protection)					
0	Dosimetric dose of ¹²⁴ I-8H9 IP. Blood draw for ¹²⁴ I-8H9 pharmacokinetics. PET scan for ¹²⁴ I-8H9 dosimetry					
1-4	Blood draw for ¹²⁴ I-8H9 pharmacokinetics. PET scan for ¹²⁴ I-8H9 dosimetry.					
3	Therapeutic dose of ¹³¹ I-8H9 IP					
3-7	Blood draw for ¹³¹ I-8H9 pharmacokinetics. Gamma camera scan for ¹³¹ I-8H9 distribution.					
24-38	Extent of disease evaluation					
28-35	CBC; decision regarding stem cell rescue					
35*	Observations period ends; can continue further therapy					

*For expansion cohort, observation period reduced to 14 days

IP RIT : Toxicities on phase I study: Poster #97

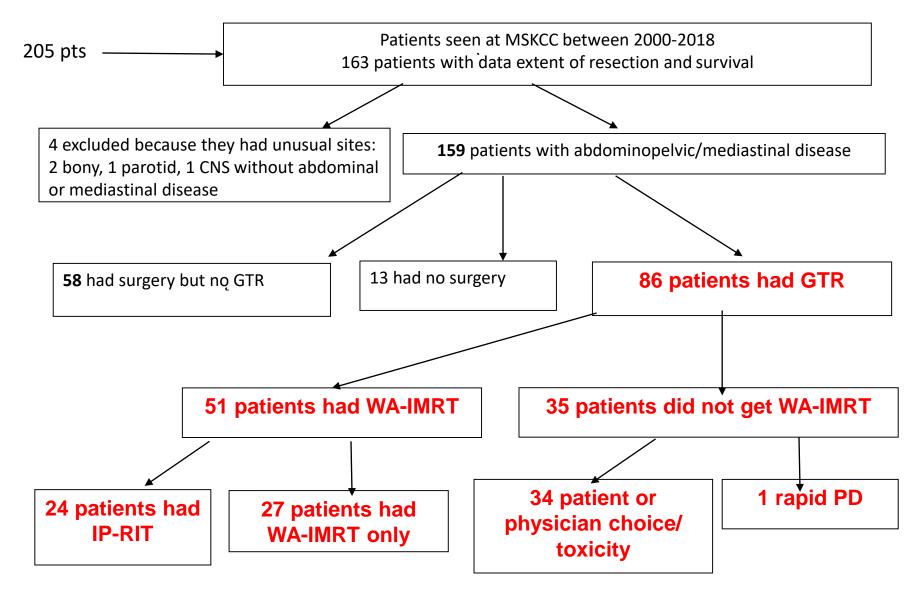

- Well tolerated at all dose levels
- Out-patient treatment (after first 3 patients)
- Main toxicity was transient abdominal pain and discomfort for <60 minutes after IP injection
- No DLTs; MTD not reached
- No hypothyroidism
- No significant myelosuppression; Stem cell rescue not required

¹³¹ I-omburtamab dose (mCi/m ²)	Grade 3 neutropenia	Grade 4 neutropenia	Grade 3 thrombocyto- penia	Grade 3 AST elevation	Grade 2 abdominal pain
30 (n=3)	0	0	0	0	2
40 (n=3)	0	0	0	0	1
50 (n=3)	0	0	0	0	1
60 (n=7)	1	0	0	0	0
70 (n=3)	0	0	0	0	0
80 (n=27)	2	2	5	1	0
90 (n=6)	0	1	1	0	0
Total	3	3	6	1	4


Phase I study: Representative whole body ¹²⁴I-8H9 PET scans (Poster 97)

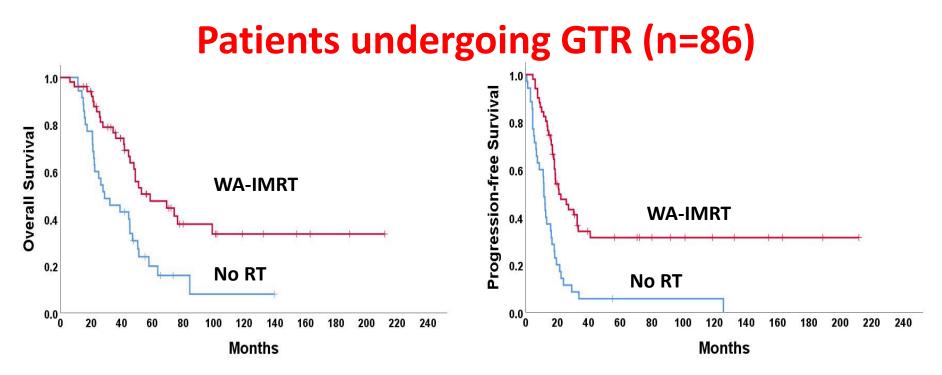
Post 2009 @MSKCC

Objectives and Methods


- To determine the effect of WA-IMRT after GTR on survival
- To determine the effect of IP-RIT after GTR on survival

- Retrospective: 2000-2018
- Included prospective data from phase I trial
- GTR defined from surgery notes
- Survival analyzed <u>from time of surgery</u>

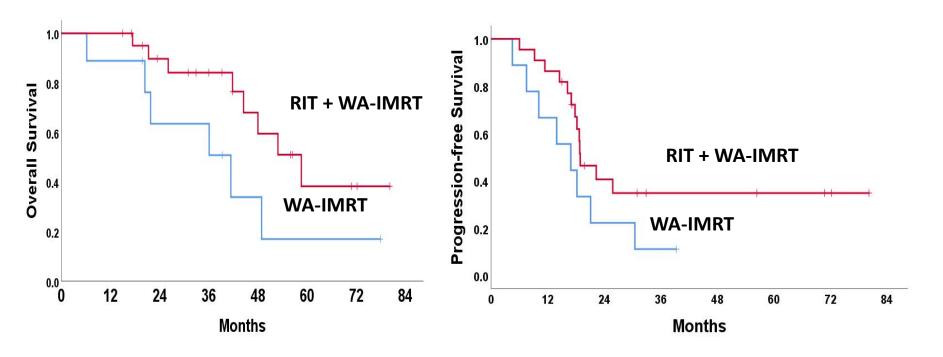
DATABASE ANALYZED


Patients undergoing GTR (n=86)

	Ν	Alive	Alive PF	Median PFS*	Median OS*
		(N)	(N)	(mo)	(mo)
Received WA-IMRT	51	28	18	21.1±4.7	58.6±12.7
Did not receive WA-IMRT	35	6	1	11.5±0.7	28.8±8.2
Received IP RIT+ WA-IMRT	24	15	9	22.3±5	58.6±7.7

*Survival calculated from time of surgery

	PFS	OS
WA-IMRT vs no WA-IMRT (51 vs 35)	< 0.001	0.001
IP-RIT+WA-IMRT vs others (24 vs 62)	0.02	0.06


33 GTR +WA-IMRT patients from 2009-17 (Phase I IP-RIT with omburtamab commenced in 2009)

	Ν	Alive (N)	Alive PF (N)	Median PFS (mo)	Median OS (mo)
Received WA- IMRT only*	9	3	1	16.9±4.5	41.4±12
Received IP-RIT +WA-IMRT	24	15	9	22.3±5	58.6±7.7

*due to unavailability (phase I) (n=4) or catheter blockade (n=5)

*Survival calculated from time of surgery

33 GTR +WA-IMRT patients from 2009-17

	PFS	OS
IP-RIT+WA-IMRT vs WA-IMRT	0.1	0.07

CONCLUSIONS

- WA-IMRT should be considered for all patients whose tumor can be resected
- IP-RIT with omburtamab is safe and shows promise when added to WA-IMRT

LIMITATIONS

- These approaches may not help all patients who do not achieve GTR of DSRCT
- Lack of evaluable disease means that survival is the only read out (similar situation to HIPEC)
- Multicenter prospective studies indicated

Treatment schema for Phase II (NCT04022213)**

Day	Treatment/Intervention				
-7	Oral liothyronine and potassium iodide commenced (for thyroid protection).				
to+28					
0	Therapeutic dose of ¹³¹ I-8H9 IP given out-patient				
3-7	Blood draw for ¹³¹ I-8H9 pharmacokinetics. Gamma camera scan for ¹³¹ I-8H9 distribution.				
14	Whole abdominopelvic IMRT 3000cGy				
~44	Autologous stem cell boost if necessary				
>44	Maintenance chemotherapy				

Primary Aim:

Achieve a favorable PFS of 20 months

Secondary Aims:

- Biomarker: DSRCT cfDNA in blood and peritoneal fluid*
- Further safety data on early WAP-IMRT

*Shukla et al JCO Precision Onc 2017

**Potential for multi-center evaluation

Memorial Sloan Kettering Cancer Center...

Acknowledgements

SARCOMA SPORE GRANT MSKCC

MSK Nursing, radiochemistry, physics, radiation safety

Memorial Sloan Kettering Cancer Center