

Phase II trial of GD2-KLH/GD3-KLH vaccine for stage 4 neuroblastoma in ≥2nd remission: Induced anti-GD2 titer strongly correlates with survival

Irene Y. Cheung, Brian H. Kushner, Shakeel Modak, Govind Ragupathi*, Stephen S. Roberts, Ellen M. Basu, Anupa Kudva, Nai-Kong V. Cheung

Departments of Pediatrics and Medicine*

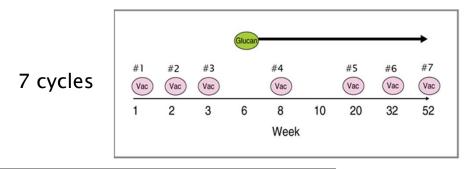
Memorial Sloan Kettering Cancer Center, New York, NY, USA

General Consensus:

High risk patients with refractory/relapsed neuroblastoma have <u>dismal</u> survival

❖Anti-neuroblastoma VACCINE for potential <u>life long</u> protection <u>without pain</u> side effects - an attractive option Cancer Therapy: Clinical

2014


Phase I Trial of a Bivalent Gangliosides Vaccine in Combination with β-Glucan for High-Risk Neuroblastoma in Second or Later Remission

Brian H. Kushner¹, Irene Y. Cheung¹, Shakeel Modak¹, Kim Kramer¹, Govind Ragupathi², and Nai-Kong V. Cheung¹

- High risk* patients who had relapsed or progressed were rendered into remission before entering this study
- N=15
- No dose limiting toxicity to vaccine & tolerable to glucan
 - * High-risk NB as defined by risk-related treatment guidelines and the International NB Staging System
 - stage 4 with (any age) or without (>18 months old) MYCN amplification
 - MYCN-amplified stage 3 (unresectable; any age)
 - MYCN-amplified stage 4S or
 - disease resistant to standard chemotherapy

Phase II Vaccine Trial at Memorial Sloan Kettering Cancer Center (Clinicaltrials.gov NCT00911560)

Bivalent vaccine: Abundance of GD2 and GD3 on NB (Dobrenkov et al. PBC 2016)

To enhance immunogenicity

- ✓ KLH (keyhole limpet hemocyanin)
- ✓ OPT 821(QS21) (saponin adjuvant)
- ✓ Beta-glucan

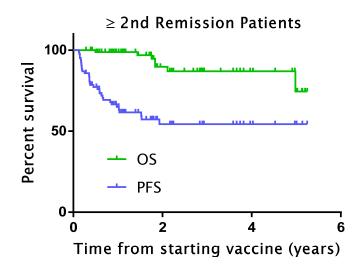
To enhance ADCC

✓ Beta glucan

Focus on 2nd and later remission group

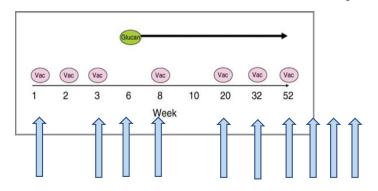
2013 to 2017	N
≥ second remission	84
2nd remission	57
3rd remission	18
4th remission	4
5th to 7th remission	5
First remission	56

> Median followup = 19 m


 \triangleright At 2 years: OS 90% \pm 5%

PFS 54% \pm 6%

No toxicity ≥ grade 3


Very high risk group

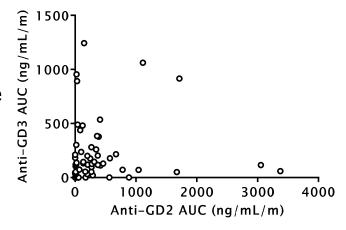
Patients with multiple relapses; received vaccine after they got back into remission

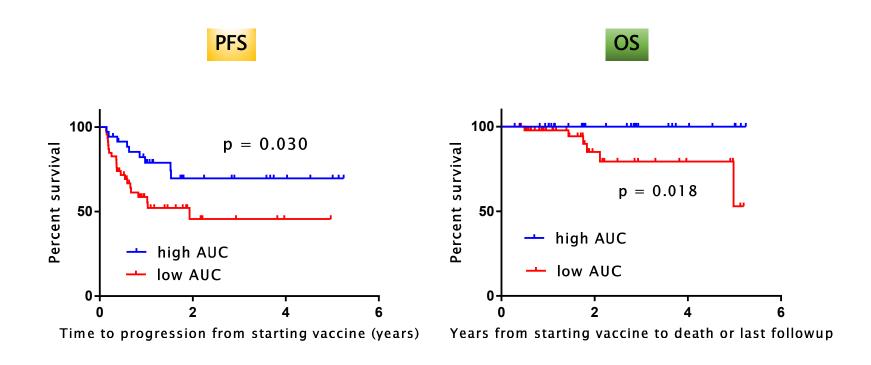
Quantitation of induced anti-GD2 and anti-GD3 response by ELISA

- > Patients sera at serial time points
- Serum antibody titers (ng/mL) were integrated over time (i.e. AUC)
- Anti-GD2 and anti-GD3 response expressed as AUC per month

Patient #1: AUC=307 ng/mL/month

Vaccine cycle #	Months from starting vaccine	Anti-GD2 titer (ng/mL)
1	0.0	0
3	0.7	0
4	1.6	84
5	4.4	150
6	7.1	226
post 6	10.1	433
7	11.7	269
post7-1	15.3	483
post7-2	18.4	532
post7-3	21.3	248

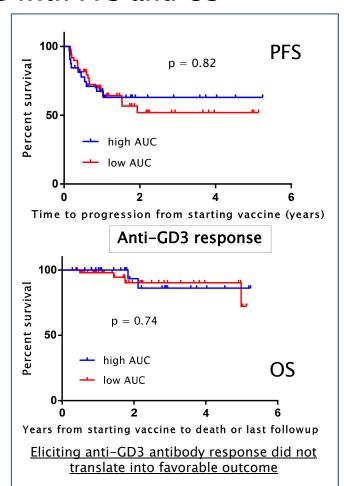



Seroconversion = antibody response

	% patients with positive	
	anti-GD2 titer	anti-GD3 titer
Pre-vaccine	13.3%	29.4%
During vaccine/followup	82.7%	70.4%

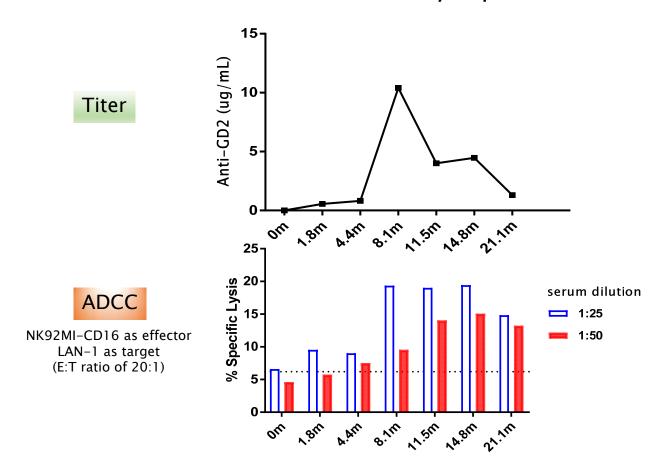
No correlation between anti-GD2 and anti-GD3 response

Induction of high anti-GD2 titer correlates with better outcome

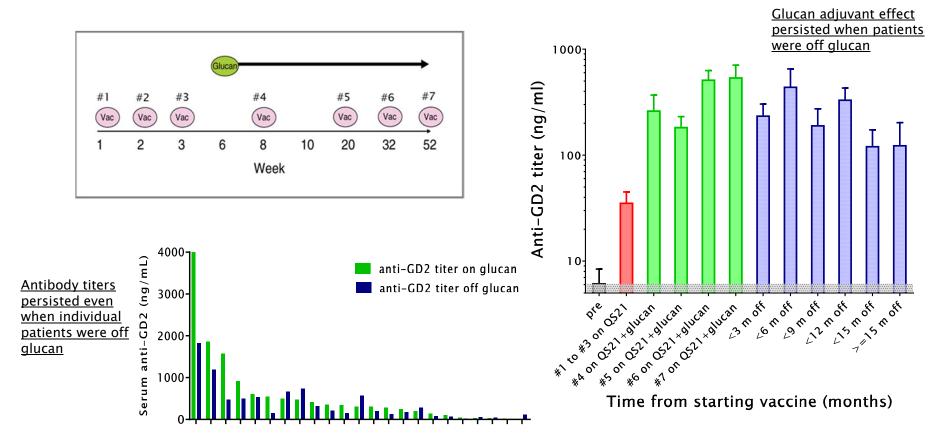


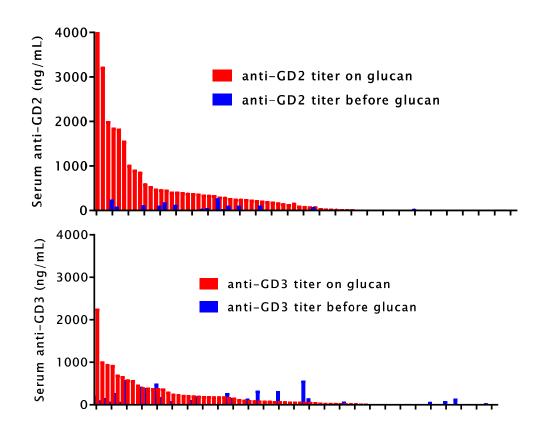
These variables did not correlate with PFS and OS

- Age at diagnosis
- Time from diagnosis
- MYCN amplification
- Number of prior relapses
- Pre-vaccine antibody titer
- Pre-vaccine anti-GD2 antibody therapy


Prior anti-GD2 antibody	N =84/84
m3F8 only	16
*naxitamab only	5
dinutuximab only	15
m3F8 + naxitamab	24
naxitamab + dinutuximab	16
m3F8 + naxitamab + dinutuximab	8

^{*} Naxitamab = hu3F8


Antibody dependent cell mediated cytotoxicity in sera from a patient with induced anti-GD2 antibody response



Beta-glucan markedly enhanced anti-GD2 titers when compared with standard adjuvant QS21 by >10 folds

≥2nd remission cohort (N=84)

Glucan markedly enhanced induced anti-GD2 and anti-GD3 titers among individual patients

Conclusions

- ✓ Oral glucan was a potent adjuvant on vaccination. Initiating glucan was associated with a substantial increase in anti-ganglioside antibody response
- ✓ Induced anti-GD2 antibody had cytotoxic function, and its response (AUC) may serve as a surrogate marker of survival benefit
- ✓ But anti-GD3 response did not correlate with PFS or OS
- ✓ Patients experienced no pain side effects nor neuropathy
- ✓ GD2 vaccine plus oral glucan could provide a viable option to improve the outlook for patients with relapsed high risk neuroblastoma