

A Curative Approach for Neuroblastoma Metastatic to the CNS

Kim Kramer, Brian H. Kushner, Shakeel Modak, Neeta Pandit-Taskar, Ursula Tomlinson, Maria Donzelli, Suzanne L.Wolden, Pat Zanzonico, John L. Humm, Sophia Haque, Mark M. Souweidane, Jeffrey P. Greenfield, Ellen Basu, Stephen S. Roberts, Jorge A. Carrasquillo, Jason S. Lewis, Serge K. Lyashchenko, Steven M. Larson, and Nai-Kong, V. Cheung

> Memorial Sloan Kettering Cancer Center New York, New York

- MSK has partnered with YmAbs Therapeutics, Inc to further develop Omburtamab (8H9).
- MSK and NKC have a financial interest in YmAbs Therapeutics, Inc.
- Some study investigators (KK, SM, NPT) are paid consultants for YmAbs Therapeutics, Inc.

Background

- The CNS is a sanctuary site for metastatic cancer.
- CNS metastases occur in 5% of pts with cancer, including 15% of patients with high risk NB.

- Despite treatment
 - surgical debulking
 - focal or whole brain RT
 - combination chemotherapy

-CNS NB is uniformly fatal; 5.5 mon median survival

(Kramer K et al J Clin Oncol 19: 2821, 2001)

HYPOTHESIS

 Intraventricular compartmental radioimmunotherapy (cRIT)

*radio-labeled tumor specific monoclonal antibodies

- 1) delivers a tumoricidal dose to the CSF
- 2) offers a therapeutic strategy

B7-H3

- Transmembrane protein homologous to other B7 members
- Immunomodulatory glycoprotein: possibly an inhibitory ligand for NK cells /T cells
- Over-expressed among many human solid tumors

Modak S. Can Research 2001; 61: 4048)

- Limited expression in normal tissues
- Tumor B7-H3 expression, prognostic marker:
 - prostate ca
 - clear cell renal ca
 - urothelial cell ca
 - ovarian ca
 - pancreatic ca
 - glioblastoma

Monoclonal Antibody 8H9 (Omburtamab)

- Murine monoclonal antibody 8H9 (Omburtamab) is specific for 4Ig-B7-H3.
- ^{131 and 124}I-8H9 retains its immunoreactive properties.

Objectives

PRIMARY:

 To define the *clinical toxicities (DLTs, MTD)* of cRIT ¹³¹I-8H9 (Omburtamab) for patients with CNS NB

SECONDARY:

- To assess the *dosimetry*
- To assess efficacy: OS

Eligibility

Recurrent CNS or LM NB

(Other 87-743 diseases — S90P Poster 19-1597)

- >50K platelets; >1000 ANC
- Adequate CSF flow, ¹¹¹In-DTPA CSF flow through an indwelling intraventricular access device

Excluded

- pre-existing grade 3 or 4 major organ toxicity
- acutely deteriorating neurologic condition
- communicating or obstructive hydrocephalus

TREATMENT PLAN

1 hour

2 days

IT ¹³¹I-8H9* SPECT imaging

METHODS

Phase I/II : ¹³¹I-Omburtamab (8H9)

Phase 1 dosing: 10-80 mCi ¹³¹I-8H9/injection x 2 DLT myelosuppression for pts w/prior CSI
Phase 2 dosing: 50 mCi per injection x 2

• Dosimetry dose

2 mCi

- Serial CSF/blood
- Serial PET scans
- Toxicity : CTCAE v.3.0 over 5 weeks
- Repeat clinical, radiographic eval at 5 weeks;
- Repeat therapy dose if no SAE and no PD

Wk 2 Therapy dose 50 mCi

131 I-Omburtamab (Oct 13, 2004-June 30, 2019)

DIAGNOSIS	No. patients	No. Injections
Neuroblastoma	109*	340
Other	68	172
Total	177	512

*6 patients enrolled but were not treated; 2 with NB

TOXICITY PROFILE

Rare grade 1 pr 2 transient headache, fever, vomiting
 self-limited, manageable with acetaminophen, anti-emetics

- Grade 3 or 4 myelosuppression
 - pts with poor BM reserve (\geq 1 ABMT, CSI)
 - <100K at Rx</p>
 - no non-myelosuppressive DLT observed

DOSIMETRY

- High mean CSF: blood absorbed dose (ratio) achieved
 - 104.9 : 2.6 cGy/mCi
 - Average CSF Clearance T ½: 6.69 hours

Neuroblastoma	No.	Acute Adverse Event (CTC 3.0) Possibly/Probably/Definite	No (%)
	107	Gr 3 or 4 myelosuppression (ANC, hgb, platelets*)	88(82%)
		Gr 4 Hypersensitivity reaction	1 (<1%)
		Gr 3 ALT/AST	5 (4.6%)
		Gr 3 Chemical Meningitis	3 (2.8%)
		Gr 3 Headache	1 (<1%)
TOTAL	107	340 injections	

OS, Time from CNS relapse, N=107

¹³¹I-Omburtamab Overall Survival

DIAGNOSIS	No.	OS (months)	3 year OS (%)
Neuroblastoma	107	50. 8 (4-180)	61 (56%)

Time	Proportion	Two sided 95% CI for the proportion		
3 years	56%	45%	65%	
5 years	44%	34%	54%	
10 years	38%	27%	49%	

Estimates based on Kaplan-Meier survival distribution, calculated in SAS V9.4.

OS Subset Analyses CNS NB

- Salvage regimen (Kramer et al., JNO 97: 409, 2010)
- *ANR 2018; N=93

1 vs. 2 therapy doses ¹³¹I-8H9-(Omburtamab)

Kaplan-Meier survival estimates S Т Survival (years) Number at risk Two Doses 57 One Dose 50 Historical 18

Few prognostic indicators for survival: CNS NB

- A. Age < or > 18 months at initial Dx
- B. MYCN status
- C. Early enrollment vs expanded cohort
- D. CSI dose

OS 18 Infants with CNS NB

High Curability of Brain Metastases Among Infants with Neuroblastoma following Adjuvant Treatment with 1311-8H9 Compartmental Radioimmunotherapy (ANR 2018)

Multifocal CNS NB - 8 years in remission

MRI brain/spine: extensive cerebral, cerebellar, spinal, intraocular lesions

Conclusions cRIT ¹³¹I-Omburtamab (8H9)

- Favorable safety profile
- Manageable acute AEs, transient myelosuppression most common
- Favorable CSF: blood ratio
- Clinical utility to treat CNS NB

Questions Remain

- What is the lower limit of CSI Gy with cRIT?
- Is there a difference in efficacy or long term adverse events with proton CSI?
- What is the minimum dose CSF cGy/mCi by cRIT to eradicate CSF NB?
- Long term toxicities
 - Neurocognitive
 - Second malignancies

Andrea S. Blevins Primeau, PhD, MBA

June 08, 2017

FDA GRANTS: Breakthrough Therapy **Designation for Metastatic Neuroblastoma**

metastatic neuroblastoma.

The US Food and Drug Administration (FDA) granted Breakthrough Therapy Designation to ¹³¹I-8H9 pediatric relapsed/refractory metastatic neuroblastoma with central nervous system or leptomeningeal metastasis.¹

Memorial Sloan Kettering Cancer Center

Ongoing Initiatives

A Multicenter Phase 2/3 Trial of the Efficacy and Safety of Radioimmunotherapy using ¹³¹I-Omburtamab for Neuroblastoma CNS/LM Metastases

Sponsor: Y-mAbs, Therapeutics

- MSK Lead; USA; Europe
- Primary objective
 - Overall survival at 3 years

Secondary objective

ORR, PFS, Dosimetry, PK, Safety

Ongoing recruitment; 18 of 32 patients

FDA Orphan Drug Program National Institute Health R21 Robert Steel Foundation Catie Hoch Foundation Kallan's Klan Katie's Find A Cure Fund Leptomeningeal Research Fund Y-mAbs, Therapeutics, Inc.

*Patients and Families

Aubrey Fund Kids V Cancer Luke's Lollies The Dana Foundation, Evan Foundation Cookies for Kids Cancer Experimental Therapeutics Center, MSK

